Chunhua Wei 1,2Shuhua Yan 1,2,*Aiai Jia 1,2Yukun Luo 1,2[ ... ]Zehuan Li 1,2
Author Affiliations
Abstract
1 Department of Instrument Science and Technology, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
We present a compact, low-noise, and inexpensive optical phase-lock loop (OPLL) system to synchronize the frequency and the phase between two external cavity diode lasers. Based on a direct digital synthesizer technique, a programmable radio-frequency generator is implemented as the reference signal source. The OPLL has a narrow beat note linewidth below 1 Hz and a residual mean-square phase error of 0.06 rad2 in a 10 MHz integration bandwidth. The experimental test results prove the competent performance of the system, which is promising as a low-budget choice in atomic physics applications.
140.0140 Lasers and laser optics 140.3518 Lasers, frequency modulated 250.4745 Optical processing devices 
Chinese Optics Letters
2016, 14(5): 051403
Yukun Luo 1,2Shuhua Yan 1,2,*Aiai Jia 1,2Chunhua Wei 1,2[ ... ]Jun Yang 1,2
Author Affiliations
Abstract
1 Department of Instrument Science and Technology, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
We present a laser frequency locking system based on acousto-optic modulation transfer spectroscopy (AOMTS). Theoretical and experimental investigations are carried out to optimize the locking performance mainly from the view of the modulation frequency and index for the specific scheme of AOMTS. An FWHM linewidth of 63 kHz is achieved and the frequency stability in terms of Allan standard deviation reaches 1.4×10 12 at 30 s. The frequency shifting capacity is validated throughout the acousto-optic modulator bandwidth while the laser is kept locked. This work offers a different but efficient choice for applications calling for both stabilized and tunable laser frequencies.
140.3425 Laser stabilization 140.3518 Lasers, frequency modulated 020.1335 Atom optics 300.6380 Spectroscopy, modulation 
Chinese Optics Letters
2016, 14(12): 121401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!